Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38723627

RESUMO

The quality and quantity of tumor-infiltrating lymphocytes, particularly CD8+ T cells, are important parameters for the control of tumor growth and response to immunotherapy. Here, we show in murine and human cancers that these parameters exhibit circadian oscillations, driven by both the endogenous circadian clock of leukocytes and rhythmic leukocyte infiltration, which depends on the circadian clock of endothelial cells in the tumor microenvironment. To harness these rhythms therapeutically, we demonstrate that efficacy of chimeric antigen receptor T cell therapy and immune checkpoint blockade can be improved by adjusting the time of treatment during the day. Furthermore, time-of-day-dependent T cell signatures in murine tumor models predict overall survival in patients with melanoma and correlate with response to anti-PD-1 therapy. Our data demonstrate the functional significance of circadian dynamics in the tumor microenvironment and suggest the importance of leveraging these features for improving future clinical trial design and patient care.

2.
Biomedicines ; 11(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38137406

RESUMO

The melanoma cell adhesion molecule, shed from endothelial and cancer cells, is a soluble growth factor that induces tumor angiogenesis and growth. However, the molecular mechanism accounting for its generation in a tumor context is still unclear. To investigate this mechanism, we performed in vitro experiments with endothelial/cancer cells, gene expression analyses on datasets from human colorectal tumor samples, and applied pharmacological methods in vitro/in vivo with mouse and human colorectal cancer cells. We found that soluble MCAM generation is governed by ADAM17 proteolytic activity and NOX1-regulating ADAM17 expression. The treatment of colorectal tumor-bearing mice with pharmacologic NOX1 inhibitors or tumor growth in NOX1-deficient mice reduced the blood concentration of soluble MCAM and abrogated the anti-tumor effects of anti-soluble MCAM antibodies while ADAM17 pharmacologic inhibitors reduced tumor growth and angiogenesis in vivo. Especially, the expression of MCAM, NOX1, and ADAM17 was more prominent in the angiogenic, colorectal cancer-consensus molecular subtype 4 where high MCAM expression correlated with angiogenic and lymphangiogenic markers. Finally, we demonstrated that soluble MCAM also acts as a lymphangiogenic factor in vitro. These results identify a role for NOX1/ADAM17 in soluble MCAM generation, with potential clinical therapeutic relevance to the aggressive, angiogenic CMS4 colorectal cancer subtype.

3.
Nat Commun ; 14(1): 476, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717561

RESUMO

The adaptive immune response is under circadian control, yet, why adaptive immune reactions continue to exhibit circadian changes over long periods of time is unknown. Using a combination of experimental and mathematical modeling approaches, we show here that dendritic cells migrate from the skin to the draining lymph node in a time-of-day-dependent manner, which provides an enhanced likelihood for functional interactions with T cells. Rhythmic expression of TNF in the draining lymph node enhances BMAL1-controlled ICAM-1 expression in high endothelial venules, resulting in lymphocyte infiltration and lymph node expansion. Lymph node cellularity continues to be different for weeks after the initial time-of-day-dependent challenge, which governs the immune response to vaccinations directed against Hepatitis A virus as well as SARS-CoV-2. In this work, we present a mechanistic understanding of the time-of-day dependent development and maintenance of an adaptive immune response, providing a strategy for using time-of-day to optimize vaccination regimes.


Assuntos
COVID-19 , Relógios Circadianos , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Imunidade Adaptativa , Vacinação , Linfonodos
4.
Nat Immunol ; 22(11): 1375-1381, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34663979

RESUMO

Migration of leukocytes from the skin to lymph nodes (LNs) via afferent lymphatic vessels (LVs) is pivotal for adaptive immune responses1,2. Circadian rhythms have emerged as important regulators of leukocyte trafficking to LNs via the blood3,4. Here, we demonstrate that dendritic cells (DCs) have a circadian migration pattern into LVs, which peaks during the rest phase in mice. This migration pattern is determined by rhythmic gradients in the expression of the chemokine CCL21 and of adhesion molecules in both mice and humans. Chronopharmacological targeting of the involved factors abrogates circadian migration of DCs. We identify cell-intrinsic circadian oscillations in skin lymphatic endothelial cells (LECs) and DCs that cogovern these rhythms, as their genetic disruption in either cell type ablates circadian trafficking. These observations indicate that circadian clocks control the infiltration of DCs into skin lymphatics, a process that is essential for many adaptive immune responses and relevant for vaccination and immunotherapies.


Assuntos
Imunidade Adaptativa , Quimiotaxia , Relógios Circadianos , Células Dendríticas/imunologia , Linfonodos/imunologia , Vasos Linfáticos/imunologia , Pele/imunologia , Idoso , Animais , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Células Cultivadas , Quimiocina CCL21/genética , Quimiocina CCL21/metabolismo , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Células Dendríticas/metabolismo , Feminino , Humanos , Linfonodos/metabolismo , Vasos Linfáticos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pele/metabolismo , Fatores de Tempo
5.
Cancers (Basel) ; 13(18)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34572851

RESUMO

The role of the proangiogenic factor olfactomedin-like 3 (OLFML3) in cancer is unclear. To characterize OLFML3 expression in human cancer and its role during tumor development, we undertook tissue expression studies, gene expression analyses of patient tumor samples, in vivo studies in mouse cancer models, and in vitro coculture experiments. OLFML3 was expressed at high levels, mainly in blood vessels, in multiple human cancers. We focused on colorectal cancer (CRC), as elevated expression of OLFML3 mRNA correlated with shorter relapse-free survival, higher tumor grade, and angiogenic microsatellite stable consensus molecular subtype 4 (CMS4). Treatment of multiple in vivo tumor models with OLFML3-blocking antibodies and deletion of the Olfml3 gene from mice decreased lymphangiogenesis, pericyte coverage, and tumor growth. Antibody-mediated blockade of OLFML3 and deletion of host Olfml3 decreased the recruitment of tumor-promoting tumor-associated macrophages and increased infiltration of the tumor microenvironment by NKT cells. Importantly, targeting OLFML3 increased the antitumor efficacy of anti-PD-1 checkpoint inhibitor therapy. Taken together, the results demonstrate that OLFML3 is a promising candidate therapeutic target for CRC.

6.
FASEB J ; 34(11): 15559-15576, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32997357

RESUMO

Pericytes promote vessel stability and their dysfunction causes pathologies due to blood vessel leakage. Previously, we reported that Olfactomedin-like 3 (Olfml3) is a matricellular protein with proangiogenic properties. Here, we explored the role of Olfml3 in a knockout mouse model engineered to suppress this protein. The mutant mice exhibited vascular defects in pericyte coverage, suggesting that pericytes influence blood vessel formation in an Olfml3-dependent manner. Olfml3-deficient mice exhibited abnormalities in the vasculature causing partial lethality of embryos and neonates. Reduced pericyte coverage was observed at embryonic day 12.5 and persisted throughout development, resulting in perinatal death of 35% of Olfml3-deficient mice. Cultured Olfml3-deficient pericytes exhibited aberrant motility and altered pericyte association to endothelial cells. Furthermore, the proliferative response of Olfml3-/- pericytes upon PDGF-B stimulation was significantly diminished. Subsequent experiments revealed that intact PDGF-B signaling, mediated via Olfml3 binding, is required for pericyte proliferation and activation of downstream kinase pathways. Our findings suggest a model wherein pericyte recruitment to endothelial cells requires Olfml3 to provide early instructive cue and retain PDGF-B along newly formed vessels to achieve optimal angiogenesis.


Assuntos
Movimento Celular , Proliferação de Células , Glicoproteínas/fisiologia , Neovascularização Patológica/patologia , Pericitos/patologia , Proteínas Proto-Oncogênicas c-sis/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Animais , Desenvolvimento Embrionário , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Patológica/metabolismo , Pericitos/metabolismo , Gravidez , Transdução de Sinais
7.
Life Sci Alliance ; 2(4)2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31249132

RESUMO

NADPH oxidases catalyze the production of reactive oxygen species and are involved in physio/pathological processes. NOX1 is highly expressed in colon cancer and promotes tumor growth. To investigate the efficacy of NOX1 inhibition as an anticancer strategy, tumors were grown in immunocompetent, immunodeficient, or NOX1-deficient mice and treated with the novel NOX1-selective inhibitor GKT771. GKT771 reduced tumor growth, lymph/angiogenesis, recruited proinflammatory macrophages, and natural killer T lymphocytes to the tumor microenvironment. GKT771 treatment was ineffective in immunodeficient mice bearing tumors regardless of their NOX-expressing status. Genetic ablation of host NOX1 also suppressed tumor growth. Combined treatment with the checkpoint inhibitor anti-PD1 antibody had a greater inhibitory effect on colon carcinoma growth than each compound alone. In conclusion, GKT771 suppressed tumor growth by inhibiting angiogenesis and enhancing the recruitment of immune cells. The antitumor activity of GKT771 requires an intact immune system and enhances anti-PD1 antibody activity. Based on these results, we propose blocking of NOX1 by GKT771 as a potential novel therapeutic strategy to treat colorectal cancer, particularly in combination with checkpoint inhibition.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , NADPH Oxidase 1/antagonistas & inibidores , NADPH Oxidases/antagonistas & inibidores , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Microambiente Tumoral/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/imunologia , Neoplasias do Colo/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Imunoterapia , Interferon gama/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Células T Matadoras Naturais/efeitos dos fármacos , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Receptor de Morte Celular Programada 1/imunologia , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Microambiente Tumoral/imunologia
8.
Nat Commun ; 9(1): 355, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29367702

RESUMO

Recruitment of circulating monocytes is critical for tumour angiogenesis. However, how human monocyte subpopulations extravasate to tumours is unclear. Here we show mechanisms of extravasation of human CD14dimCD16+ patrolling and CD14+CD16+ intermediate proangiogenic monocytes (HPMo), using human tumour xenograft models and live imaging of transmigration. IFNγ promotes an increase of the chemokine CX3CL1 on vessel lumen, imposing continuous crawling to HPMo and making these monocytes insensitive to chemokines required for their extravasation. Expression of the angiogenic factor VEGF and the inflammatory cytokine TNF by tumour cells enables HPMo extravasation by inducing GATA3-mediated repression of CX3CL1 expression. Recruited HPMo boosts angiogenesis by secreting MMP9 leading to release of matrix-bound VEGF-A, which amplifies the entry of more HPMo into tumours. Uncovering the extravasation cascade of HPMo sets the stage for future tumour therapies.


Assuntos
Adenocarcinoma/imunologia , Neoplasias da Mama/imunologia , Movimento Celular/imunologia , Neoplasias Colorretais/imunologia , Inflamação/imunologia , Monócitos/imunologia , Neovascularização Patológica/imunologia , Animais , Linhagem Celular Tumoral , Quimiocina CX3CL1/imunologia , Fator de Transcrição GATA3/imunologia , Humanos , Interferon gama/imunologia , Metaloproteinase 9 da Matriz/imunologia , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante de Neoplasias , Fator de Necrose Tumoral alfa/imunologia , Fator A de Crescimento do Endotélio Vascular/imunologia
9.
Biochim Biophys Acta Mol Cell Res ; 1865(4): 638-649, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29378216

RESUMO

Most cancer deaths result from metastasis, which is the dissemination of cells from a primary tumor to distant organs. Metastasis involves changes to molecules that are essential for tumor cell adhesion to the extracellular matrix and to endothelial cells. Junctional Adhesion Molecule C (JAM-C) localizes at intercellular junctions as homodimers or more affine heterodimers with JAM-B. We previously showed that the homodimerization site (E66) in JAM-C is also involved in JAM-B binding. Here we show that neoexpression of JAM-C in a JAM-C-negative carcinoma cell line induced loss of adhesive property and pro-metastatic capacities. We also identify two critical structural sites (E66 and K68) for JAM-C/JAM-B interaction by directed mutagenesis of JAM-C and studied their implication on tumor cell behavior. JAM-C mutants did not bind to JAM-B or localize correctly to junctions. Moreover, mutated JAM-C proteins increased adhesion and reduced proliferation and migration of lung carcinoma cell lines. Carcinoma cells expressing mutant JAM-C grew slower than with JAM-C WT and were not able to establish metastatic lung nodules in mice. Overall these data demonstrate that the dimerization sites E66-K68 of JAM-C affected cell adhesion, polarization and migration and are essential for tumor cell metastasis.


Assuntos
Movimento Celular , Molécula C de Adesão Juncional/metabolismo , Multimerização Proteica , Sequência de Aminoácidos , Animais , Adesão Celular , Linhagem Celular Tumoral , Polaridade Celular , Proliferação de Células , Células Epiteliais/patologia , Molécula B de Adesão Juncional/metabolismo , Molécula C de Adesão Juncional/química , Molécula C de Adesão Juncional/genética , Pulmão/patologia , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas Mutantes/metabolismo , Mutação/genética , Metástase Neoplásica , Fenótipo , Ligação Proteica
10.
Eur J Immunol ; 47(6): 1002-1008, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28299776

RESUMO

Leukocyte recruitment is an important process in combating pathogens. The largest class of circulating leukocytes are neutrophils, which rapidly invade inflamed tissue, followed by inflammatory Ly6C+ monocytes. Ly6Clow monocytes patrol the endothelial wall routinely in the steady state. We recently reported early luminal recruitment of Ly6Clow monocytes, which preceded and orchestrated neutrophil arrival and extravasation in response to TLR7/8-mediated vascular inflammation. Here we dissected the kinetics of recruitment of monocytes and neutrophils and examined the dynamics of Ly6Clow monocytes in response to several other Toll-like receptor (TLR) agonists, using intravital confocal microscopy. We observed two types of kinetics in mesenteric veins. TLR2, TLR5 and TLR9 agonists caused early monocyte and neutrophil influx whereas TLR3 and TLR4 agonists rapidly recruited neutrophils and caused Ly6Clow monocytes to arrive at low levels later on. All TLR agonists, except TLR9, led Ly6Clow monocytes to meticulously patrol the vascular wall. Finally, these monocytes released pro-inflammatory cytokines and chemokines implicated in neutrophil recruitment in response to TLR2, TLR4, and TLR9 stimulation but not to TLR3 and TLR5 agonists. These results refine our understanding of the early events in the leukocyte recruitment cascade, including the patrolling behavior of Ly6Clow monocytes, in TLR-mediated acute vascular inflammation.


Assuntos
Endotélio/imunologia , Inflamação/imunologia , Monócitos/imunologia , Infiltração de Neutrófilos , Receptores Toll-Like/imunologia , Animais , Antígenos Ly/imunologia , Antígenos Ly/metabolismo , Quimiocinas/biossíntese , Quimiocinas/imunologia , Citocinas/biossíntese , Citocinas/imunologia , Cinética , Camundongos , Monócitos/metabolismo , Receptor 2 Toll-Like/agonistas , Receptor 2 Toll-Like/imunologia , Receptor Toll-Like 9/agonistas , Receptor Toll-Like 9/imunologia , Receptores Toll-Like/agonistas , Receptores Toll-Like/metabolismo
11.
Proc Natl Acad Sci U S A ; 113(33): E4847-56, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27482114

RESUMO

Inflammation is characterized by the recruitment of leukocytes from the bloodstream. The rapid arrival of neutrophils is followed by a wave of inflammatory lymphocyte antigen 6 complex (Ly6C)-positive monocytes. In contrast Ly6C(low) monocytes survey the endothelium in the steady state, but their role in inflammation is still unclear. Here, using confocal intravital microscopy, we show that upon Toll-like receptor 7/8 (TLR7/8)-mediated inflammation of mesenteric veins, platelet activation drives the rapid mobilization of Ly6C(low) monocytes to the luminal side of the endothelium. After repeatedly interacting with platelets, Ly6C(low) monocytes commit to a meticulous patrolling of the endothelial wall and orchestrate the subsequent arrival and extravasation of neutrophils through the production of proinflammatory cytokines and chemokines. At a molecular level, we show that cysteine-rich protein 61 (CYR61)/CYR61 connective tissue growth factor nephroblastoma overexpressed 1 (CCN1) protein is released by activated platelets and enables the recruitment of Ly6C(low) monocytes upon vascular inflammation. In addition endothelium-bound CCN1 sustains the adequate patrolling of Ly6C(low) monocytes both in the steady state and under inflammatory conditions. Blocking CCN1 or platelets with specific antibodies impaired the early arrival of Ly6C(low) monocytes and abolished the recruitment of neutrophils. These results refine the leukocyte recruitment cascade model by introducing endothelium-bound CCN1 as an inflammation mediator and by demonstrating a role for platelets and patrolling Ly6C(low) monocytes in acute vascular inflammation.


Assuntos
Antígenos Ly/análise , Proteína Rica em Cisteína 61/fisiologia , Monócitos/fisiologia , Vasculite/etiologia , Animais , Plaquetas/fisiologia , Movimento Celular , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/fisiologia , Receptor 7 Toll-Like/fisiologia , Receptor 8 Toll-Like/fisiologia
12.
J Vis Exp ; (105)2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26649781

RESUMO

Efficient immune response is dependent on rapid mobilization of blood leukocytes to the site of infection or injury. Investigating leukocyte migration in vivo is crucial for understanding the molecular basis of leukocyte transendothelial migration and interaction with vascular endothelium. One powerful approach involves intravital microscopy on transgenic mice expressing fluorescent proteins in cells of interest. Here we present a protocol for imaging monocytes and neutrophils in the CX3CR1gfp/wt mouse i.v. injected with orange dye-labeled neutrophils with an inverted confocal microscope. Time-lapse movies gathered from 30 min to several hours of imaging allow the analysis of leukocyte behavior in mesenteric veins under both steady state and inflammatory conditions. We also describe the steps to locally induce blood vessel inflammation with TLR2/TLR1 agonist Pam3SK4 and monitor the subsequent recruitment of neutrophils and monocytes. The presented technique can also be used to monitor other populations of leukocytes and investigate molecules implicated in leukocyte recruitment or trafficking using other stimuli or transgenic mice.

13.
PLoS Pathog ; 10(12): e1004550, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25474593

RESUMO

The recruitment of dendritic cells to sites of infections and their migration to lymph nodes is fundamental for antigen processing and presentation to T cells. In the present study, we showed that antibody blockade of junctional adhesion molecule C (JAM-C) on endothelial cells removed JAM-C away from junctions and increased vascular permeability after L. major infection. This has multiple consequences on the output of the immune response. In resistant C57BL/6 and susceptible BALB/c mice, we found higher numbers of innate immune cells migrating from blood to the site of infection. The subsequent migration of dendritic cells (DCs) from the skin to the draining lymph node was also improved, thereby boosting the induction of the adaptive immune response. In C57BL/6 mice, JAM-C blockade after L. major injection led to an enhanced IFN-γ dominated T helper 1 (Th1) response with reduced skin lesions and parasite burden. Conversely, anti JAM-C treatment increased the IL-4-driven T helper 2 (Th2) response in BALB/c mice with disease exacerbation. Overall, our results show that JAM-C blockade can finely-tune the innate cell migration and accelerate the consequent immune response to L. major without changing the type of the T helper cell response.


Assuntos
Moléculas de Adesão Celular/imunologia , Células Dendríticas/imunologia , Imunidade Celular , Imunidade Inata , Imunoglobulinas/imunologia , Leishmania major/imunologia , Leishmaniose Cutânea/imunologia , Animais , Células Dendríticas/patologia , Feminino , Leishmaniose Cutânea/patologia , Camundongos , Camundongos Endogâmicos BALB C , Pele/imunologia , Pele/parasitologia , Pele/patologia , Células Th1/imunologia , Células Th1/patologia , Células Th2/imunologia , Células Th2/patologia
14.
Nat Commun ; 4: 2842, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24280864

RESUMO

Thymic epithelial cells (TEC) are heterogeneous stromal cells that generate microenvironments required for the formation of T cells within the thymus. Defects in TEC lead to immunodeficiency or autoimmunity. Here we identify TEC as the major source of cysteine-rich protein 61 (CYR61), a matricellular protein implicated in cell proliferation and migration. Binding of CYR61 to LFA-1, ICAM-1 and integrin α6 supports the adhesion of TEC and thymocytes as well as their interaction. Treatment of thymic lobes with recombinant CYR61 expands the stromal compartment by inducing the proliferation of TEC and activates Akt signalling. Engraftment of CYR61-overexpressing thymic lobes into athymic nude mice drastically boosts the yield of thymic output via expansion of TEC. This increases the space for the recruitment of circulating hematopoietic progenitors and the development of T cells. Our discovery paves the way for therapeutic interventions designed to restore thymus stroma and T-cell generation.


Assuntos
Proteína Rica em Cisteína 61/metabolismo , Células Epiteliais/citologia , Células-Tronco/citologia , Linfócitos T/citologia , Timo/citologia , Animais , Adesão Celular , Proliferação de Células , Células Cultivadas , Proteína Rica em Cisteína 61/genética , Células Epiteliais/metabolismo , Humanos , Integrina alfa6/genética , Integrina alfa6/metabolismo , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Antígeno-1 Associado à Função Linfocitária/genética , Antígeno-1 Associado à Função Linfocitária/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Ligação Proteica , Células-Tronco/metabolismo , Linfócitos T/metabolismo , Timo/metabolismo
15.
PLoS One ; 6(2): e14665, 2011 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-21326871

RESUMO

Reactive oxygen species, ROS, are regulators of endothelial cell migration, proliferation and survival, events critically involved in angiogenesis. Different isoforms of ROS-generating NOX enzymes are expressed in the vasculature and provide distinct signaling cues through differential localization and activation. We show that mice deficient in NOX1, but not NOX2 or NOX4, have impaired angiogenesis. NOX1 expression and activity is increased in primary mouse and human endothelial cells upon angiogenic stimulation. NOX1 silencing decreases endothelial cell migration and tube-like structure formation, through the inhibition of PPARα, a regulator of NF-κB. Administration of a novel NOX-specific inhibitor reduced angiogenesis and tumor growth in vivo in a PPARα dependent manner. In conclusion, vascular NOX1 is a critical mediator of angiogenesis and an attractive target for anti-angiogenic therapies.


Assuntos
Células Endoteliais/metabolismo , NADH NADPH Oxirredutases/genética , Neoplasias/irrigação sanguínea , Neovascularização Patológica/genética , PPAR alfa/fisiologia , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Animais , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Feminino , Técnicas de Silenciamento de Genes , Marcação de Genes , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Terapia de Alvo Molecular , NADH NADPH Oxirredutases/antagonistas & inibidores , NADH NADPH Oxirredutases/fisiologia , NADPH Oxidase 1 , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neovascularização Patológica/tratamento farmacológico , PPAR alfa/genética , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Piridonas/farmacologia , Piridonas/uso terapêutico , RNA Interferente Pequeno/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...